The monadic second-order logic of graphs III : tree-decompositions, minors and complexity issues
نویسنده
چکیده
We relate the tree-decompositions of hypergraphs introduced by Robertson and Seymour to the finite and infinité algebraic expressions introduced by Bauderon and Courcelle. We express minor inclusion in monadic second-order logic, and we obtain grammatical characterizations of certain sets of graphs defined by excluded minors. We show how tree-decompositions can be used to construct quadratic algorithms deciding monadic second-order properties on hypergraphs ofbounded tree-width. Résumé. — On étudie les liens entre les décompositions arborescentes d'hypergraphes introduites par Robertson et Seymour et les expressions algébriques d'hypergraphes finies ou infinies de Bauderon et Courcelle. On exprime l'inclusion au sens des mineurs en logique monadique du second ordre, et on obtient des caractérisations grammaticales de certains ensembles de graphes définis par mineurs exclus. On utilise les décompositions arborescentes pour construire des algorithmes quadratiques qui décident les propriétés des hypergraphes de largeur arborescente bornée exprimables en logique monadique du second ordre.
منابع مشابه
The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues
We relate the tree-decompositions of hypergraphs introduced by Robertson and Seymour to the finite and infinité algebraic expressions introduced by Bauderon and Courcelle. We express minor inclusion in monadic second-order logic, and we obtain grammatical characterizations of certain sets of graphs defined by excluded minors. We show how tree-decompositions can be used to construct quadratic al...
متن کاملGraph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs
Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...
متن کاملGraph Structure and Monadic Second-Order Logic: Language Theoretical Aspects
Graph structure is a flexible concept covering many different types of graph properties. Hierarchical decompositions yielding the notions of tree-width and clique-width, expressed by terms written with appropriate graph operations and associated with Monadic Second-order Logic are important tools for the construction of Fixed-Parameter Tractable algorithms and also for the extension of methods ...
متن کاملGraph structure and Monadic second-order logic
Exclusion of minor, vertex-minor, induced subgraph Tree-structuring Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations. Mainly useful for tree-structured graphs (Second-order logic useless) Tools to be presented Algebraic setting for tree-structuring of graphs Recognizability = finite congruence ≡ inductive computability ≡ finite det...
متن کاملTree-width and the monadic quantifier hierarchy
It is well known that on classes of graphs of bounded tree-width, every monadic second-order property is decidable in polynomial time. The converse is not true without further assumptions. It follows from the work of Robertson and Seymour, that if a class of graphs K has unbounded tree-width and is closed under minors, then K contains all planar graphs. But on planar graphs, three-colorability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011